Skip to main content
Home

Main navigation

  • ABOUT
    • MISSION
    • LEADERSHIP
    • PROJECT LEADERS
    • INVESTIGATORS
    • DATA MANAGEMENT
    • SCIENTIFIC ADVISORY BOARD
  • OVERVIEW
  • NEWS
  • PUBLICATIONS

A general computational design strategy for stabilizing viral class I fusion proteins

Karen J. Gonzalez, Jiachen Huang, Miria F. Criado, Avik Banerjee, Stephen M. Tompkins, Jarrod J. Mousa & Eva-Maria Strauch
Nature Communications
February 2024
Image
A general computational design strategy for stabilizing viral class I fusion proteins

Abstract

Many pathogenic viruses rely on class I fusion proteins to fuse their viral membrane with the host cell membrane. To drive the fusion process, class I fusion proteins undergo an irreversible conformational change from a metastable prefusion state to an energetically more stable postfusion state. Mounting evidence underscores that antibodies targeting the prefusion conformation are the most potent, making it a compelling vaccine candidate. Here, we establish a computational design protocol that stabilizes the prefusion state while destabilizing the postfusion conformation. With this protocol, we stabilize the fusion proteins of the RSV, hMPV, and SARS-CoV-2 viruses, testing fewer than a handful of designs. The solved structures of these designed proteins from all three viruses evidence the atomic accuracy of our approach. Furthermore, the humoral response of the redesigned RSV F protein compares to that of the recently approved vaccine in a mouse model. While the parallel design of two conformations allows the identification of energetically sub-optimal positions for one conformation, our protocol also reveals diverse molecular strategies for stabilization. Given the clinical significance of viruses using class I fusion proteins, our algorithm can substantially contribute to vaccine development by reducing the time and resources needed to optimize these immunogens.

https://www.nature.com/articles/s41467-024-45480-z
University of Georgia
  • Schools and Colleges
  • Directory
  • MyUGA
  • Employment Opportunities
  • Copyright and Trademarks
  • Privacy
#UGA on
© University of Georgia, Athens, GA 30602
706‑542‑3000